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2 : W. R. Graham

To investigate the high-frequency vibration and acoustic radiation of fluid-loaded
structures, the model problem of a simply-supported plate excited by a random
pressure field is considered. The analysis is standard and yields a set of modal
equations coupled by acoustic interaction terms. These terms not only complicate
the equations, but also appear in a form that is difficult to evaluate numerically at
high frequencies and mode numbers. The latter problem is resolved by deriving
asymptotic expressions for the acoustic coefficients, and computational solution of
the full, coupled modal equations then becomes feasible. By comparing the results
with the ‘diagonal approximation’ (the solution when coupling is ignored), an
improved characterization of the physical nature of the acoustic coupling is
obtained, and new conditions for its neglect are specified. The conditions are not
stringent, implying that the diagonal approximation will often be valid, and raising
the possibility of applying statistical energy analysis (sEA) to significantly fluid-
loaded structures. Modified sEA results are derived, and found to compare well with
the modal solutions.

1. Introduction

The excitation of a fluid-loaded structure by some form of random forcing is an
important problem in many areas of engineering. The presence of the fluid is clearly
fundamental to the radiated acoustic field, but it may also affect the structural
vibration via the induced acoustic pressures. If the fluid-loading is very light,
structural properties always dominate the response, and the solution in vacuo for the
vibration applies. For somewhat heavier fluid-loading, the presence of the
(unbounded) fluid may be accounted for by including additional modal damping and
mass terms, but this approximation eventually breaks down, and the exact solution
for the combined structural-acoustic vibration must be found. Here the acoustic field
in the fluid couples the structural modes in vacuo, and the modal equations take a
matrix form, with an inevitable increase in complexity. This paper investigates the
problem in this region, with the aim of obtaining an understanding of the physical
nature of the modal coupling and its effects, and thereby specifying conditions under
which approximate solutions become valid.

The specific example considered is the excitation of a flat, fluid-loaded plate by a
random pressure field. Such a problem has been analysed many times, either with the
coupling terms neglected (see, for example, Davies 1971a; Heron 1977) or retained
(Davies 19716 ; Mkhitarov 1972; Sandman 1975; Lomas & Hayek 1977 ; Leppington
et al. 1986; Bano et al. 1992). Of the latter group of authors, all but Lomas & Hayek
compare solutions obtained with and without modal coupling effects accounted for.
Sandman’s results, for a water-loaded composite plate, show significant differences
between the two solutions, as do those of Davies and Bano et al., also for water-loaded
plates at low frequencies. On the other hand, Leppington et al., considering the high-
frequency, light fluid-loading case, predict that, even if coupling is important, its
frequency-averaged effect is nil. Mkhitarov distinguishes between two possible
situations, the first where resonant modes do not overlap, in which case a negligible
effect is expected, and the second where there is overlap, and coupling is potentially
significant.

As a result of this work, some characterization of the coupling has emerged.
However, a full understanding of its physical behaviour and a simple set of

Phil. Trans. R. Soc. Lond. A (1995)
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Vibration and radiation of fluid-loaded plates 3

requirements for its neglect are lacking. Here we address the deficiency by
calculating the full solution to the coupled modal equations, and comparing it with
that obtained when coupling is neglected. For situations involving many modes, the
numerical generation of the modal equations is computationally arduous, and this
difficulty is removed by obtaining accurate asymptotic approximations to the
coupling terms, valid in the high-frequency limit. The generation of the full solution
for the high-frequency region is then feasible.

It is found that the differences between the solutions may be qualitatively
explained by using a simple analytical model, with a resulting improvement in the
physical characterization of the coupling behaviour. The model is also used to
provide simple and general conditions for the neglect of modal coupling, applicable
to situations both with and without overlapping resonances. The requirements are
likely to be satisfied in most practical cases, suggesting that further approximations,
following the methods of statistical energy analysis (SEA), may also be valid. sEa
expressions for the power radiated by the plate exist for the light fluid-loading
problem (Davies 1971a; Heron 1977; Leppington et al. 1986), but these require
modification for the heavy fluid-loading case. New formulae are therefore obtained
and compared with the modal solutions for plate radiation.

The paper consists of three main sections. In §2, the fundamental analysis for the
excitation of a fluid-loaded plate by a random pressure field is presented, and
formulations for the power quantities of interest are obtained. Additionally, an exact
characterization of the nature of the acoustic coupling is presented, demonstrating
that it is too simplistic to consider it solely as a mechanism for transferring energy
between modes. In §3 the asymptotic evaluation of the coupling terms is described.
The analysis itself is lengthy, and the section is written so that this part may be
omitted without affecting the arguments put forward in §4, where the full and
approximate solutions for the relevant power quantities are compared. The
comparison extends from overall powers down to individual modal powers, and
includes detailed explanations of the individual modal behaviour via a model that
considers interactions between two modes only. This allows the identification of the
important differences when coupling is neglected, and hence the requirements for
these to be negligible. The section concludes with the new sEa expressions for the
significantly fluid-loaded plate, and comparisons of sEa and modal predictions.

Finally the conclusions of the work, and how they apply to a broader class of
problems, are discussed in §5. Although the results in §4 are obtained for a specific,
and somewhat limited, situation, it is argued that they have a wider applicability
and may thus be used as general requirements for the neglect of coupling by an
ambient fluid.

2. The boundary-layer excited plate
(@) Introduction

The model problem is shown in figure 1. Here a simply supported thin elastic plate,
of length a, breadth b, mass per unit area M and bending stiffness B (= EA®/12(1 —1?)
in terms of the Young modulus E, thickness A and Poisson ratio v), is excited by a
turbulent boundary layer and radiates acoustic power into the bounding fluid
(density p,, sound speed c,). Surrounding the plate is an infinite rigid baffle, and
backing it is a vacuum.

The problem is solved under the assumption that the interaction between
boundary-layer and acoustic pressures is negligible, so that the surface pressure

Phil. Trans. R. Soc. Lond. A (1995)
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4 W. R. Graham

plate radiates acoustic energy
tox>0

infinite baffle

turbulent boundary layer

Figure 1. The boundary-layer excited plate. Set in an infinite rigid baffle, with simply supported
edges, the plate is driven by the turbulence pressures on its surface and radiates acoustic energy
into the surrounding fluid.

fluctuation on the plate consists of the sum of the ‘blocked’ (rigid wall) turbulent
boundary-layer pressure and the acoustic pressure due to the plate motion. The
coupled fluid-plate response may then be found by expanding the plate
displacement in terms of its modes of vibration ¢n vacuo and solving for the modal
velocities. The analysis is well known (see, for example, Davies 1971a; Lomas &
Hayek 1977) and will only be summarized here, to introduce notation and provide
a basis for the discussion of power quantities in §2c.

(b) Analysis
As our aim is to derive power spectra, the analysis is in terms of variables Fourier-

transformed with respect to time. The plate displacement component
w(y, 2, 0) €' dw/2n is then determined by the single-frequency response equation

(BV* —Mw?)w = — p,— Py, (2.1)

where p,(x, y, 2, w) and py(x, ¥, 2, w) are the boundary-layer and acoustic pressures. For
a flow of low Mach number, p, satisfies the Helmholtz equation

(VE+E) py=0 (2.2)

(here k, = w/c,, the acoustic wavenumber), and the problem specification is
completed by the boundary condition linking fluid and plate displacements,

0Po/ 0l ymg = po 0 w. (2.3)

On performing the modal analysis, the response equation, (2.1), is found to take
the matrix form

dmn Vmn +€t‘0 Z’ Z%npq Vpg = _ptmn/Mw‘ (24)

Db,q

Here p.,,, and v,,, are the components of the turbulence pressure and plate velocity
in the (m,n) mode, e.g.

a (b
ptmn(w) = J J Pt(O’y,Z,w) Wmn(y’z) d?/dz, (25)
0JO

with Yony,2) = [2/4/(ab)]sink,, zsink, y (2.6)
in terms of the modal wavenumbers k,, = mn/a, k, = nn/b. The acoustic pressure

Phil. Trans. R. Soc. Lond. A (1995)
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Vibration and radiation of fluid-loaded plates 5

contributes via the fluid-loading parameter €;, = p,c,/Mw, and the dimensionless
impedances Z3; ., which describe the contribution of the (p, ) modal velocity to the
(m,n) modal pressure as follows:

pomn pO C() Z Zmnpq »q’ (27)

Equation (2.7) is derived from (2.2) and (2.3) by taking Fourier transforms in the

spatial variables y and z, so that me,q takes the integral form

(k k,)
where (for positive w) the square root must be either positive real or positive
imaginary, to satisfy the requirements of causality and boundedness for the acoustic
field, and the shape functions §,,,, S,, are the spatial Fourier transforms of the
corresponding mode shapes:

pa

a (‘b
*) =j f P, (y.7) e F0Y e dy d. (2.9)
0J0

This integral may be evaluated analytically and we find that, for (m+p) odd, the
product 8%, S, is an odd function of £,, and is similarly odd in k, for (n+¢) odd. The
modal acoustic impedance ZY, . is thus zero unless (m +p) and (n+¢) are both even,
in which case the product is purely real, and the real and imaginary parts of Zj\, .
arise from the supersonic (k2 + k2 < k) and subsonic (k2 + k2 > kj) integration ranges
respectively.

The prime on the summation in (2.4) signifies that the term 2%, . v, is excluded,
Z% . mn instead being combined with the structural parameters in the dimensionless
impedance

dmn = i[(klrlnn/n4)(1_ies)_l]"'efoZ%nmn (2.10)

Here k,,, = (k2,+k2) is the overall modal wavenumber, n, = (Mw?/B,)t the plate
wavenumber, and structural damping has been represented by the addition of a small
imaginary part to the plate bending stiffness, B = B, (1 —ie;).

An exact solution to (2.4) may only be found numerically. A common
approximation is to neglect the coupling terms, and thereby obtain the explicit result
Mww,,, = = Punn/%my- In this work, however, we retain the full equations and derive
the relevant power spectra in terms of the (as yet unknown) coupled solution

vamn = Z Ymnpq(_ptpq)‘ (211)
p.q
(c) Power calculations
(i) Power spectra
The spectrum of the radiated acoustic power, Sy(w), is given by

21 8w —w’) S, J j 2Re [py(0, ¥y, 2, w)v*(y, 2, 0")] dy dz, (2.12)

where the overbar denotes an ensemble average and &( ) is the Dirac delta function.

Phil. Trans. R. Soc. Lond. A (1995)
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6 W. R. Graham

On expressing the pressure and velocity as modal sums, performing the integration
and using (2.7), (2.11), we find

So(@) = 2 Soma(w), (2.13)
m,n
where S,,,, is the spectrum of the radiation from mode (m,n), given by

MwSOmn(w) = 26f0 2z 2 XRe [Z?rfnpq qurs Ymmj rsij]' (2'14)
p,qr,81,7
Here @, is the cross-modal excitation, defined in terms of the wavenumber-

frequency spectrum of the turbulence pressures, @ ,(k,, k,, 0):

P11(©) = s f f oy oy, @) SE (ke k) Sy (ke k) ey Ak, (2.15)

The corresponding spectra for the boundary-layer input and structurally
dissipated powers, S,,,, and Sg,,,, are best obtained by multiplying (2.4) by v}, (),
ensemble averaging and again applying (2.11). The result is the modal power balance
equation, S;,,, = Somn +Samn, Where

MwStmn( ) =2 Z R’e [Y;l:mpq ¢mnpq] (216)
p,q
k4
and M8 gpmn(w) = 26 X XY mnpq Y hars ¢pqm‘ (2.17)
My poars

The overall power balance equation, S, =8,+8S,, is trivially confirmed by
summation.

(i1) The diagonal approximation
For comparison purposes we require expressions for S,,,,, Som, and Sy, when

coupling terms are neglected. Then Z% = Z% . 0,,08,, and (2.11) takes the
form Y,,,,,4 = dtnOmp Ong- (Here 8y, is the Kronecker delta, equal to one for ¢ = j, and
Z€ro 0therw1se.) Under this approximation, (2.14), (2.16) and (2.17) become
of
MwS‘Oimn( w) = 26f0'Ri[g—M¢mnmw (2.19)
|2 anl®
4
MoS () = 2¢ k”;" ~———~q§'”"’”2", (2.20)
Ny 1l

and the modal power balance is clearly preserved here.

Some authors, for example Davies (1971a), Keltie & Peng (1987), present an
analysis that allows coupling to be important in the power quantities even if it has
been neglected in solving for the plate response. This approach applies if the coupling
impedances are comparable with Z% = but fluid-loading is so light that the
structural properties dominate (2.4). The diagonal approximation above is then
only valid if there is no significant coupling in the excitation terms:

D O np Ong
Phil. Trans. R. Soc. Lond. A (1995)

mnpqg — mnmn


http://rsta.royalsocietypublishing.org/

A

R
\\ \\
P

/

Py
|\

Y

AL

THE ROYAL
SOCIETY

OF

2
=
25
&
@)
7
Q
=
a5
a

TRANSACTIONS

THE ROYAL A
SOCIETY /4

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Vibration and radiation of fluid-loaded plates 7

(iii) The nature of the acoustic coupling

In cases where the coupling is important, it is instructive to consider its
characteristics. To do so, we write (2.14) for the (m, n) radiated power spectrum as
a sum of interactions §?2  with modes (p,¢). These terms are given by

omn
MwSil)’r(er(w) = 2€f0 R‘e [Z(r)rfnpq qumn]> (2'21)
where qumn = Z Z qurs Y;knnij ¢rsij (222)
r,8 14,7

is a quantity proportional to the cross-spectrum of the (m,n) and (p, g) velocities. The
reverse interaction, Sjbe, may be related to 8§y, by using symmetry properties of
the problem. First, because the shape function product in the integrals for Z!, . and

®,.; ((2.8) and (2.15)) is real, ZY ., = Zp,p, and Dy, = @, ;. Furthermore, as the

pgmn mnpq tjrs

wavenumber-frequency spectrum of the turbulence pressures, @,(k,, k,, »), is also

real, @}, = @, ;. Thus we find
MoSFE () = 2e0[Re (Z3,,50) Re (Vpgmn) = Im (Z35,0) I (Vo)1 (2.230)
MQ)S(%Z((()) = 2€f0[R‘e (Z(r]rfnpq) Re (qumn) + Im (Z%npq) Im (qumn)]' (223b)

Equations (2.23) represent a coupling with two parts: ‘leaky’ and ‘direct’. The
imaginary part of Z%, . leads to the direct coupling, which is of opposite sign in
(2.23a) and (2.23b) and represents energy transfer between the modes. This is an
effect one would naturally associate with coupling. The real part of Z{\, .. on the
other hand, leads to a term that is of the same sign for each mode, representing
energy radiated due to their mutual interaction: leaky coupling. This phenomenon
may be explained by noting that the real part of Z3;,,, arises from the integration
range in (2.8) corresponding to supersonic (i.e. radiating) wavenumbers, and is thus
associated with a field carrying energy away from the plate. By contrast, the
imaginary part arises from subsonic, non-radiating wavenumbers, whose field can
only transfer energy from one mode to another: direct coupling.

The general analysis presented here already shows that the modal coupling
provided by the acoustic field is somewhat unusual. Later, in §4, we shall find that
it is also on occasion highly counter-intuitive, because the leaky coupling terms can
become negative, corresponding to both modes extracting energy from the ambient
acoustic field. To proceed further at this point it is necessary to evaluate the

impedance Zj .. and this is the subject of the following section.

3. Evaluation of the modal acoustic impedance
(@) Introduction

Numerical evaluation of Z),  is computationally arduous for cases with m # p,
n # q, particularly at high mode numbers. The successful solution of the coupled
response equations (2.4) in situations involving many modes thus rests on finding
accurate analytical approximations to the impedance.

Some such approximations already exist. The real part of the direct impedance,
Z% . mn» has been comprehensively characterized by Leppington et al. (1982), and its
imaginary part is known to leading order for modes shorter than the acoustic

wavelength (Davies 1971a; Chang & Leehey 1979). However, in spite of the efforts
Phil. Trans. R. Soc. Lond. A (1995)
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8 W. R. Graham
Im(K, or K;)
K, or K, plane
Re(K, or K,)
>

,
| ‘

Figure 2. Integration contour C,. The K, and K, integrals in (3.1) must be deformed onto C, to
avoid real axis poles, which occur when the oscillatory terms in the integrand are decomposed into
their exponential components.

of Davies (1971b) and Pope & Leibowitz (1974), no accurate, numerically validated
expressions have been found for the coupling cases (m # p and/or n # q). The
asymptotic analysis presented here remedies this deficiency via a unified approach
that not only reproduces and extends the known results for the direct impedance, but
also yields new expressions for the coupling impedances. The theory follows
Leppington et al. (1982, 1986) in considering the high-frequency case, where the
products kg a, kyb of the acoustic wavenumber and the plate dimensions are large,
and is presented in §§36-3d. The results are summarized and compared with
numerical evaluations of the integral in §3e.

(b) Preliminary analysis
The natural length scale for the impedance integral is k', and all wavenumbers
will be non-dimensionalized accordingly. Thus, writing k, = k. K, k, = k,K,, (2.8)
becomes

k2S% (ko K, ko K,) S, (ko K, ko K,)
Zinnpg = ) J J = =) Spglo By o dK,dK,.  (3.1)

— K, — K3y

The evaluation of the shape function product for (m+p), (n+¢q) even is
straightforward, yielding an oscillatory expression dependent on K,, K,, the
dimensionless modal wavenumbers K,,, K,, K,, K,, and the dimensionless plate
length, 4 = kya, and breadth, » = kyb (Graham 1993). On decomposing the oscillating
terms into their exponential components, (3.1) may be cast in a form suitable for
contour integration, namely

By = Hoa o [ [ Bl el g, ar, (32)
) e Je, (1— K2 K2y
where FinplK.) = [1— (= 1) 5] /[(K2~ K3 (K2~ K3)] (33)

and G,,,(K,) is similarly defined (with u replaced by 7). The integration paths have
been deformed onto the contour C; (figure 2) to avoid the real-axis singularities
introduced by the decomposition when m = p and/or n = q.

For m # p and n # q, there is a four-dimensional parameter space for (3.2).
Fortunately, this may be reduced by the method used by Leppington et al. (1986).
When m # p, but n = g, F,,,, is written in partial fraction form, yielding

Z%npn [Kpr/(K2 -K; )][Jx _J};nn]’ (34)

(K,
where JX n/“? . 1 szn ))dK dK, (3.5)
and F(K,) = [1—(—1)™elke]/(K (3.6)

Phil. Trans. R. Soc. Lond. A (1995)
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Vibration and radiation of fluid-loaded plates 9
(@) Im(K,) (b) Im(K,)

Re(K,)

Figure 3. Branch cuts and integration contours in the K, plane: (a J) K?>0; (b) K2 <0. For
K(=1-— Kz) posmve the branch points for (1—K2— —K2)? are at + (K2), and for K? negative they
are at +i(— ) In each case the integration path is deformed onto C,, the contour around the
upper half-plane branch cut.

Similarly, for m # p and n # ¢,
Zinnpg = K n K K Ko (K — K3) (Ka— K3 [T pe— Ty — T+ 551, (3.7)

4 F, (K, G,K,)
h SR = m R U dK,dK 3.8
where " mu JCIJCI (1—K,—K) 77 39

and (,,(K,) is defined similarly to F,,(K,). The remaining case, where m = p and n # ¢,
may simply be obtained from the m # p, n = ¢ case by making the appropriate
exchanges of variables, so this completes the preliminary analysis required. In the
following sections, we perform an asymptotic evaluation of the integrals presented
here, under the assumption u,7 > 1: the high-frequency approximation.

(¢) Bvaluation of the first integral

The first integral to be evaluated will usually be that over K,,. The K, plane branch
cuts required to ensure the correct behaviour of the square root term will then
depend on K, via the quantity K? = 1 —K?Z, taking the form of figure 3 (a) for K2 > 0,
and that of ﬁgure 3(b) for K% < O There are two cases to consider; n = ¢ and n # q.

(i) The n = q case
When n = g, the integral over K, is

GrunlKy)
I,,K,)=| —r—v.dK,. 3.9
The integration contour is deformed onto the upper half-plane branch cut, yielding
L =1ym — 15, Where
ny 1 J | dK,
1,,.= p+ ; 3.10
AR (K e, IR (K- o)
PRUT0: S 8] dK
d L= Yoo, 3.11

an nn2 J'% (ngl_K?l)z (K?_K;)g ( )

Phil. Trans. R. Soc. Lond. A (1995)
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10 W. R. Graham

The first component, ,,,, may be evaluated exactly, with the following result:

nni>

ny —i 2i 2K% —K? (Kn+(K§—K3)%) L } )]
i = i 11 2 -1 ’
i 2K%,[(K§—K3)f nn(Ki—K%(Kn(Ki—K%F ' K o

r

(3.12)

where K, is either positive real or positive imaginary, and (K2 —K2): = —i(K2—K2):
for K, > K. The second, however, may only be found asymptotically, by expanding
the non-exponential terms in the integrand about K, = K, and integrating term by
term. This process gives

Lypy ~ (21/9K )i e~/ o0 KK /(K2 — K2)2 + O (3 11K Kn)) (3.13)

unless K, = K, or K, ~ 0. The latter case will not be required, but the former will,
and must be considered more carefully. To account for the rapid variation of
(K,—K,) at the base of the branch cut, we make the substitutions K, = K, +iu/7,
K, = K,+vy/7, and note that the contribution to the integral away from the base is
exponentially small. The asymptotic analysis (Graham 1993) then yields

Luny ~ ay i+ ay i+ 0077, (3.14)
3 8 o—in/4 : (0 3 o—in/4 f iy

where a1=_ﬂ_e_2[(2+3>{ﬁ‘ wh_me }_le ] 5150

Ki(K,+K,) y Loy 22 Yy

3 pin/d %(,h 1 —in/4
= e KB 4 ) (1D _Ee Py o] (3.15b)

2KHK,+K,) % 2y
F*(z) = J e i dt, (3.16)
0

and 3 is either positive real or negative imaginary.

To complete the analysis for [, ,, in the K, ~ K, transition region, (3.14) must now
be shown to match with the non-uniform approximation, (3.13). Using the Fresnel
integral relations in §7.3 of Abramowitz & Stegun (1965), we obtain

F(yr) mie™4  je ¥ e 3je W .
S~ T Oy 3.17
y: 2y 2y 4 sy ) GA7

for |y| large. Equations (3.15) thus become

QimieTin/t iy 5 L
KUK, K g oW 0w, (3.18)
and, noting that y = (K, —K,), it is clear that the expressions for /,,, match in the
regions |y| > 1.

It remains to consider the combined expression, 1,, =1,,,—1,,s and demon-
strate that the singularities in /,,,,, at K, = K, are cancelled by /,,,. On expressing
1,,, in terms of y, we find

L, ~ bypi+b, 554 0(°), (3.19)

. 2iqiein/4 [( i)F*(y%) ie‘iy}
with b= ————| (24| —L— , 3.20a
TREAE R T Ty R
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Vibration and radiation of fluid-loaded plates 11
ntelY (9K, + K )[ ) ]
and b, = — T %2y +1)—F = +e ¥ 3.200
SR T N R oY
around K, = K,. The small argument form of the Fresnel integral,
F*(z) = 2—422+ 0(2%), (3.21)

may then be used to show that (3.19) is analytic at y = 0.

(ii) The n # q case
The integral over K,, is now

G.(K,)
I, = L md&, (3.22)

and the same approach as for I,,,, yields I,, = I,,, —I,,,, where I, takes the exact form

; 2 __ e
I 21 [ln(K"+(K" K'))+§in] (3.23)

" K- Ko o
o \t e~in/4 gin(Kr—Kp) 2Ky
and Iy~ (nT) —m“ww ein(K,—Ky) (8.24)

away from the regions K, ~ 0 and K, ~ K. In the latter,

1

]—i— O(n73), (3.25)

1
2

I 2z eyt [F *yh) mieTitd
"K(K, KLy

which may be demonstrated to match with (3.24) by using the same method as
previously. Additionally, the singularity at y = 0 in (3.25) cancels that in /,;, and I,
is thus analytic at K, = K.

The results for I, and I, presented here may be justified by noting that they
include, as a special case (K, = 1), the expressions of Leppington et al. (1986) for the
one-dimensional plate. We thus move on to consider the three cases required for the
second integral: direct (m = p,n = ¢), singly-cross (m # p,n = q) and doubly-cross
(m # p,n #q).

Qy%

(@) Bvaluation of the second integral
In evaluating the K, integral, it is first necessary to define the K, plane branch cuts.

There are two roots to consider, namely K, (= (1—K2)}) and (K2—K2):, both of which
are either positive real or positive imaginary for real K,. The branch cuts in the K,
plane are thus as shown in figures 4 (for K,, < 1) and 5 (K,, > 1). In addition, we shall
need two steepest descent contours, SD1 and SD2, corresponding to the exponentials
e'"Kr and e'*X:el7¥r, The contours have been calculated by Graham (1993), and are

also plotted in figures 4 and 5. (The angle 6, is defined by tané, = b/a.)

(i) Contour deformations

In all three cases under consideration, the same integrand arrangements and
contour deformations will be necessary, so that it will suffice to consider the direct
case as a demonstration of the approach employed. Substituting (3.9) into (3.2) gives

4K? K2
B = S8 [ B ) LK) A, (5.26)

Phil. Trans. R. Soc. Lond. A (1995)
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12 W. R. Graham

. ".
=4 ",
.,"’ K, plane G G ““.
.': icot 6, ‘k
':' sp2
\ ]
Af \ cos Gc‘) sec 6, Engz)

A4
T D

SD1
Figure 4. Branch cuts and integration contours in the K, plane when K, < sin ,. The integral along
C, is decomposed into three parts, each of which has its integration path deformed onto a suitable
contour. Note that the branch cuts and SD2 do not intersect.

for the direct impedance. The integrand must now be split into separate components,
each component being deformed onto a suitable contour. The choice of components
and subsequent contour deformation is dependent on the location of the (K?—K2):
branch cut relative to the contour SD2, and there are three distinct ranges of K, to
be considered: K, < sin6,, sinf, < K, < cosecl, and K, > cosec,.

For K, < sinf, the branch point at K, = (1—K2): lies to the right of the saddle
point (at K, = cos0,) on SD2. Using I, = 1,,,,—1,,,, and (3.3) for F,,,,,, the integral
is split into three components:

Z%nmn = (M%Ki/nzl’”?)[ID]—IDz+ID3]’ (327)

where, after the appropriate contour deformations (figure 4), first,

ID] = J Flmm(Kz)Innl(Kz) dKz +2niRD]’ (328)
Cy+Cy
with RD] = [(Kz_Km)Flmm(Kz)Inn](Kz)]Kz=Km’ (329)
1,,.(K,)
secondly, I,,= f —nn2 2 dK,; 3.30
y ) P <h (350
PRI )
and finally, Iy, = J g dnne(K,) AK, + 8, 21iR ), (3.31)
SD2 (Kz_Km)
with 0, = H(cos0,—K,,)+ H(K,,—secl,) and
R d [ K 3.32
D2 — I:az{(KZ_'_Km)z nnz( z)}:le:Km~ ( . )

The residue R, from the double pole is only picked up if it lies outside the region
bounded by the real axis crossings of SD2; hence the introduction of the Heaviside
step functions in J,,.

Phil. Trans. R. Soc. Lond. A (1995)
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Vibration and radiation of fluid-loaded plates 13
Im(K;)

.7 ‘ C3 ‘.‘
s P i(K3-1)12
*
S Cy .
, K, plane “'
K icot 6, *
‘

A- \ cos 6, sec 6, .: Re(K,)
= ~ 152 > >
( S a Y

Figure 5. Branch cuts and integration contours in the K, plane when K, > cosecd,. As for
K, <sin6, there is no intersection between SD2 and the branch cuts, and the same integral
decomposition and contour deformations may be used.

The above formulation also applies for K, > cosec6, (figure 5), but when
sinf, < K,, < cosec 0, a different approach to the contour deformation is required, as
the steepest descent contour SD2 now intersects the first branch cut (figure 6). The
integral is written as

Z%nmn - 4-K2 ‘Kz/"c /“7 102_105], (333)

where, after suitable contour deformations, 7, is again defined by (3.30), 7
given by

pa 18

1,,.(K,)
ID4 = J oure, (K—an—ﬁTdK +27'51RD3, (334)
. d [ 1,,,(K,)
with R =[—{M}] , 3.35
b dKz (Kz+Km)2 K,=K,, ( )
RIS )
and [, by ID5=J ol (K;) dK, + 0, 2R ), (3.36)
spetc,, (K K3,)
h R d fer™m g 3.37
it = ‘ .
w1 D4 I:dKz{(Kz+Km)2 nn( z)}:le:Km ( )

The contribution to /,; from C,, is exponentially small apart from at the base of
the branch cut, where the K, ~ K, transition expression, (3.19), applies for 7,
However, noting that F'*(—z) = — F*(z), it is clear that (3.19) is continuous across
the branch cut, at least to the orders of interest, and the integral along C,, can thus
be discarded. Now [,, may be split into its component parts, I,,, and I,,,,. The
integral containing the latter needs no further manipulation, but that involving the

Phil. Trans. R. Soc. Lond. A (1995)
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14 W. R. Graham

......

. K, plane

(|

SD1
Figure 6. Branch cuts and integration contours in the K, plane when sin8, < K, < cosecd,. The
first branch cut and S8D2 now intersect, necessitating a different approach to the integral
decomposition and contour deformations.

former has its integration path further deformed to Cy, (the part of the first branch
cut above the steepest descent contour) and C,, giving
oK ,~Kp) oK ~Ky)

1,..(K,)dK,— .
R T A

In=|
bs Cap+C, (KE—K?n)
+2niky,+(1—0,) 2niRkp,. (3.38)
It remains to note that B, may be expressed in terms of R, R, and R,,, namely
R,, = Rp;— Ry, — R, so that the net residue contributions here will be exactly the

same as for the K, <sinf,, K, > cosec, cases. The results for all three K, ranges
may thus be combined to give

Z?rfnmn :Zex+8mZmo+6nZno+Zml+Zn1+st’ (3.39)

with §, defined similarly to d,,, being one unless sin 6, < K, < cosec 6, in which case
it is zero, and

K,)dK

z

‘U{%Ki{f Loy (K) : }

x = 22 dK,+2niR,), ¢, 3.40

© T Cy¥C, (K;—K3)? P ( )
Zmo = (SiKgnK?L/n/’L”)RDm (3.41)

4K2 K2 in(K,—K,y)
= im "f © K,)dK,, (3.42)
C

no — 1.[211“7 (Kz_Kz )2Inn1(
3 2 m

4K KL [ ewriKw
T f VEmy e
Zyy = —(4K2 K2 /m*un) I, (3.44)

V/ K, dK,, (3.43)

m1 =

and

4K2 K? oK ~Kp) eiH(K,~Kp)
st - T'52/“7 {fsm (K? _Kfn)zlnnz(Kz)dKz —(1—- 8n) fCab (I{Tl{fn)zlnnl(]{z) dKz} :

2

(3.45)
Phil. Trans. R. Soc. Lond. A (1995)
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Vibration and radiation of fluid-loaded plates 15

This general formulation will be used throughout the analysis for the second integral.
The problem is thus reduced to the evaluation of the six unknown components of
(3.39), and their counterparts for the singly- and doubly-cross cases.

(ii) Direct case

Equation (3.40) for Z,, may be evaluated exactly using (3.29) for R, and (3.12)
for I,,,. The integral on C, is found to be finite as the radius.of the bulb around the

nnl:
1, singularity is allowed to tend to zero, and the result is
_ 121 [AK,) AK,) 2
Ly = P+nP2{ u + , +1thKnP4/mB(K’”’K")’ (3.46)

where P? = K2 + K2 — 1 with P positive real or negative imaginary, 4(K,,) is given by
AK,) =[(K%+P? /K, Q)arctan (K,,/Q)+1, P*<0,Q=iP, (3.47a)

| AP (K, 4P
m 2K, P K, —P

AK

+ér in}+ 1, P:>0, (3.47b)

with ¢, = H1—-K,), A(K,) and ¢,,, are similarly defined, and finally

_K,K,2P*+P*=3K} K}) (2P'+P*+3K; K3) (KmKn
B(K,, K,) = (1—K2)(1—K2) 0 arctan q )

P?<0,Q =1iP, (3.48a)

K, K,(2P'+P*—3K2 K2)

Bl Kn) == "R (1= K2

m> n

L @P+P 43K ) {ln K, K,+P

—1)i P> 0. .
5P KmKn_P'+(elm+em 1)11‘5}, > 0. (3.48b)

The second term in (3.39), Z,,,, is defined by (3.41) and is easily evaluated to
leading order by using (3.32) and (3.13) for R, and I,,,, giving, for K, <1,

7, ~—2ie "/ glllnKi K2 ([ —p,) /TiLE, Piyi4+ O(N %) (3.49)

mo

where L, = (1—K2), r,=9K,/uL, and N= (u2+9)t For K, >1, Z,, is
exponentially small, and we may thus replace §,,Z,,, in (3.39) with ¢,, Z,,,, where
€y, = H(cos0,—K,,).

Equation (3.49) becomes non-uniform around P? = 0 (the coincidence transition),
and here the K, ~ K,, form of 1,,,,, equation (3.14), must be used, leading to

3 _imjagee L : (1 Lo—inja\  ia—iz,
4o~ 121e K%y [{(2+_1_><F (zz)_nel )_1e }
Lz (K, +L,)? 2y 2 223 2

. {(i_i> (F*(zg) o e—i“/‘l) +§ e_i:z}] 4 ()(N‘%), (3.50)

T T
zy 222 2 222 2 z

Do Mo~

where z, = 9(K, —L,,). Matching between (3.49) and (3.50) in the regions |z,| > 1
may be demonstrated by using (3.17).

Phil. Trans. R. Soc. Lond. A (1995)
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16 W. R. Graham

The next term, Z,, arises from the branch cut integral given by (3.42). Tts
asymptotic evaluation is complicated by the singularities in /,,, at the base of the
cut, but the result is found to be finite as the radius of the bulb at K, = K,, tends to
zero and, for K, < 1,

Zpy ~ — 2t W @M Ln Kl K2 (1 — ) /L3 P*uf 4+ O(N %), (3.51)

where L, = (1—K2): and r, = uK,, /9L, while for K, > 1, Z,,, is exponentially small.
As with 6,, Z,,,, we may thus replace 6, Z,,, with ¢,Z,,, where ¢, = H(sin0,— K ,).

Equation (3.51) for Z,,, is symmetrical with (3.49), in that exchanging x for % and
K,, for K, will convert Z,, to Z,,,. The near coincidence form of Z,, may thus be
obtained either by this straightforward method, or by making the substitutions
K,=L,+z/p, K,, = L,+2/p and again performing the integral over C,. In this
case,

2ie K2 4k i\ (F*(z) mre ™4\ e in
Lo~ 7T w112 e
nelz (K, +L,)* 2 z 222 2y

1
i 3\ [F*(zt) me "4\ 3eia .
O s e
1

I T
2 2z 2

and the comments on matching for Z,,, apply in equal measure here.
The Z,,, term in (3.39) is the integral around the second branch cut with the same
integrand as Z,,. It may be evaluated asymptotically, with (negligible) result

Loy ~ BieWIEm K2 InK2 (1 — K2 )22 (3.53)

for K, not too close to one, nor K, to zero. If K,, is near one, the integral may be
estimated by using the substitutions K, = 1 +z/u, K,, = 1+x,,/u, which give

8K?2 e %m
7, o~ tm_|fip
i nKi<1+Km>2n[(w“(””’")+ 7 )

21 1 . —iZ -3

where F(x) = Ci(|2|) +i(3msgn x — Si(x)) (3.55)

and Ci, Si are the cosine and sine integrals (see Abramowitz & Stegun (1965), §5.2).
For large ||,
F.(x) ~ie®/x—e /a2 + O(x7?) (3.56)

and (3.54) thus matches with (3.53) for |,,| > 1. Additionally, the discontinuities and
singularities in Z,, at x, =0 exactly cancel those in Z,,, providing a smooth
transition through the K,, = 1 region.

Alternatively, for K, close to zero, the substitution K} = 2v2/u replaces
K, =14z, /n, and the result is

4 elr(1-Ky) g2 e in4(1 + 2i0?) .

Ly ~ 1] — ; 22 ] o -3 R
m ™ T —Kfn)zﬂﬂ[ oty Ips(v,) [+ OWNT3), (3.57)
where Ipy(x) = 2mE ™4 e712" sgn ([ F*(|2])* — Lt el™/4) (3.58)
(the x < 0 form will be required in a later expression). For v, large, matching with
Phil. Trans. R. Soc. Lond. A (1995)
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Vibration and radiation of fluid-loaded plates 17

(3.53) may be demonstrated by using (3.17). Analytical expressions have not been
found for the case where both K,, ~ 1 and K, ~ 0, and we note this as an unresolved
problem. The solution is described later, in §3e.

The fifth term, Z,,, is the integral along the steepest descent contour SD1 and,
using (3.13) for I,,,,,, it may be evaluated via the standard steepest descent technique,

with result Zyy ~ 8ieM0-ED R /K2 (1 — K2)2m?, (3.59)

It is readily apparent that Z,, is the analogue of Z,,,, with (3.59) being identical
to (3.53) when K, ,, K, and p,  are exchanged. Like Z,,,, Z,, is negligible to the orders
of interest unless either K, is close to one, when

8K?2 - e ¥n
g ()

2 1 1 . —iz, —3
2 g i) Pt e [+ 0, 3.60

with z, = 9(K,—1), or K,, is close to zero, in which case
4 e~ Kn) 2 _e‘i"/“(l +2iv2)
" m(U—KG)
with v, = (7/2)iK,,. Equations (3.60) and (3.61) are awkward to obtain from the
steepest descent integral, whereas their derivation from the symmetry argument is
trivial.

Lastly, (3.45) for Zy, consists of a steepest descent integral on contour SD2, usually
ON7?), and a branch cut integral on C,, that is exponentially small unless SD2
crosses the branch cut very close to the real K, axis. This term is thus usually
negligible, but it becomes important if K,, is close to cosf,, or K, to sin6,. The
two cases may be combined by writing K, = cos6,+2:sinf,y,,/Nt,
K, = sinf,+2tcos 6, y,/N* and making the substitution

K, = cos 0,4 2:e "4 gin 6, v/N*.

For |y,| ~ O(1) or larger, the non-uniform expression for [,,,, (3.13), is valid
everywhere on SD2, and the integral on C,, is exponentially small. Equation (3.45)
then becomes

st ~ [Cdsd/(ym + yn)3N] [IF3(ym) +IF3(yn) + l(ym + yn) (ym IF‘3(ym) )
+Ynlpa(yn) —2me ™) +ONE),  (3.62)
4 e—in/4 eiN(l—Km cosf,—K, sin HC)Kz Kz

nt cos® 0, sin® 0, (cos 0, + K ,,)? (sin 0, + K )

T IF3(vm)]+O(N_3)> (3.61)
21,

where Coa =

(3.63)

This expression for Zg, is analytic at y,, = —y,, but contains discontinuities at
Ym = 0,9y, = 0. Aslong as y,, +y, ~ O(1) or larger at these points, the discontinuities
cancel those in the oscillatory terms ¢, Z,,, and ¢, Z,,,, showing that the use of (3.13)
forI,,, and the neglect of the C,, integral are valid in this case, even for |y,| < 1. (The
reason for this will become apparent in the following analysis.) However, if
Ym+ Y, ~ ON?), the discontinuities in €, Z,,, and ¢, Z,, differ from those in (3.62)
and the steepest descent integral must be re-examined. We now write

4K K2 )
~ 70 i m-_—n — —_— .64
lua ~ ia+ Zha = =3 2 (1=8,) Jcab =iyl (K) K. (3.64)

Phil. Trans. R. Soc. Lond. A (1995)
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18 W. R. Graham
Im(w)
w plane A
-y % > Re(w)
Cin

Figure 7. The w plane, with pole, branch cut and integration contour. The contour is deformed
downwards for z, < 0, and upwards onto the branch cut for z, > 0.

where Z2, is the integral evaluated above, and

L ARLKE [ e
lsd = 2 2 2 \2 (I;m2 s
un Cin (Kz _Km)

nn2

ydK

. (3.65)

Here I, and I} ,, are the leading-order terms of the non-uniform and transition
expressions for [, ,, (equations (3.13) and (3.14)), and C,, is the region of the steepest
descent contour where the transition expression for [,,, applies. On making the
substitutions K, = cos0,+z,/u, K, =sin0,+z,/y, K, = cosf,+w/u, the inte-
gration region is transformed to the w plane (figure 7) and C;, may be taken to cover
the range |w| <N i. Then (Graham 1993) the integration contour may be completed
at ‘infinity * with an error O(N %) at most, negligible here. For z, < 0, the contour is
deformed downwards, picking up a pole contribution for z,, <0, and nothing for
Zm > 0. When z,, > 0, it is deformed upwards onto the branch cut, picking up a pole
contribution if z,, > 0. In the first two cases, the C,, integral does not contribute and
the addition to Z; is entirely determined by the position of the z,, pole. This also
turns out to be the case for z, > 0, as the C;, integral is found to cancel (to leading
order) with the Z.; branch cut integral, leaving only the (potential) pole contribution.
The result for Z_, is thus

Ziga ~ 28— (Em+ 6= 1) Cpu N o2+ 2,), (3.66)
e MK K2

h C,, =— 3.67

where = = T (cos O+ K, )¥(sin 0, + K, )? (3.67)
_ 2i 3\ [F*@) mie ™Y qe ' 3e7iz  2je iz

and IF,,(z)—KQJr;—g){ ] d | taat | (368

The discontinuities in the additional term at K, = cosf,, K, =sinf,, are (to
leading order) those required to cancel the discontinuities in the terms Z2y, €,, Z .
and €, Z,,. Thus, in this region it provides a smooth transition through the points
K, = cosf,, K, =sinf,, whereas for z,, z, large (3.17) may be used to show that it
becomes negligibly small.

(iii) Singly-cross case
In this case we consider the partial impedance, J%,,, defined by (3.4) and (3.5). The

mn>
analysis proceeds exactly as for the direct case, with the exception that the

symmetry arguments used to derive the transition forms of Z,, are not applicable

Phil. Trans. R. Soc. Lond. A (1995)
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Vibration and radiation of fluid-loaded plates 19

here, so the corresponding terms are found instead by reversing the order of
integration and proceeding as for Z,,,. Graham (1993) gives further details; the
results may be summarized as

Siun = JextenTnot€n o+ I+ 51+ 5. (3.69)

The component terms correspond to those for the direct case, and take the
following forms:

4i K 4 K, (K:+P? K, K
I £ R — —m n n mn
="K, Qﬂamtan( Q ) +nKnP2M[1—Ki e
P*<0,Q=iP, (3.70q)
.2 K,+P ,
=T
4 K, (K2+P¥( |K,K,+P .
— m —1 2
+nK,,P2M[1—K§ 3k, P \"K,K,—p| T @mten—Ding|, PP>0,
(3.70b)
J%o ~ 2t ellln=Ka 2 /mil s K Punt, (3.71)
JEo ~ 2te M ol lu=Knl(] —p ) /TELE P2yt 4+ O(NF), (3.72)

except around coincidence (P? &~ 0), when
1

5 imjagre 1 . %3 Lo—in/a\ o a—iz, ,
Tho~ = (244 (CE-EE ) - o, @)
TpL%nKm(Kn'i'Lm) w 2 25 QZ§ 2y
3 Lin/4 : %[5 1o—in/a\ ;. o-izg .
J;;O ~— 2t e l[(2+ﬁ)(F (fq)—n e i )_17'16 ]—}-O(N_E), (374)
Ly (K, + Ly) gt )\ 2 224 2%

J%. ~ O(N~®), unless K, is near one, when
Sor ~ — [8/nKL(1+K.,,) ] Fog(,) + O(N2), (3.75)

or K, is close to zero, for which case

4 eir(=Km) e M4(1 + 2iv2)
J;;zl ~ [ - =

n(1—K3,) u
Similarly, J%, ~ O(N~?), except that, for K, ~ 1,

8K2 . e 1%n
x %% |fip
R ries o Ay

o, Iraton) |+ 00y (3.76)

1(1+ 2 )[<1+ixn>ch<xn>+e-”n]]+0<N-3), (3.77)

C\K3, 14K,
and, for K,, near zero,
J5 ~ [4eT M nO-K0R2 iy (1 — K2)2um ] ] py(v,,) + O(N ). (3.78)
Lastly, Ji, ~ O(N~?) except around K,, ~ cosf, or K, ~ sin0,, when
I~ T+ (€€, — 1) O, N7 (2,4 2,), (3.79)
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20 W. R. Graham
where
xo Cysa : 1 —in/a -2
Jsd ~ —M[IFS(ym)-'_IF:’.(yn)+21(ym+yn)(yn1F3(yn)_nze )]+0(N ),
(Yt )N
(3.80)
3 —in/d iN(1-K,, cos0,—K, sin0,) fr2
with O =y e _—n (3.81)
m2 cos® 6, sin? 0, (cos ,+ K ,,) (sin 0, + K ,)*
2; Jin/4 2
and e = = S : (3.82)
nzcos B, (cos 0, +K,,) (sinf,+ K ,)*
_ i\ (F*(z) mie ™) je iz i
IFX(z)—(2+;){ 7 > —+ (3.83)

(iv) Doubly-cross case
Here the quantity to be evaluated is the partial impedance J%¥ . defined by (3.7)
and (3.8), and the results are summarized by

Soon =k ten T te, oo+ I+ i1+ J4, (3.84)
8 (K K ) .
JEE=——— —arctan| 22|, P2<0,Q=iP, 3.85a
nK,, K, Qu Q (5.850)
4 K, K,+P .
JXX = n c ¢, — P2 .
JEx K K. Prr [ln K K, —P + (61t €1p 1)11t], >0, (3.85b)
T~ — 28 el LKl ymilh K Prugi+O(N73), (3.86)
T~ — Zet e tinl /il K, Py + O ), (3.87)
unless P? ~ 0 (coincidence), when
1 —in/a (s 1 —in/a s
TS~ g [ (=) _me ]+0(N‘E), (3.88)
mely, K (K + L) pop L 23 22
7 —in/4 (5 1 —in/a s
F PN 1 [ =) _Te ]+0<N-f>, (3.89)
Ly K, (K, +Ly) el 2 22
I ~ OV ?), with exceptions
Sor ~ [8MKG (1 + K ) uy] Fog(2,,) +ONT?), K, 21, (3.90)
and Sy~ [de MW [y, (1= K2) pp] Ly(v,) +OWN?), K, 0. (3.91)

Similarly, the significant J*¥ contributions are
Soi ~ [8/mKG,(1+K,) ) Fog(x,) + ONT?), K, & 1, (3.92)
and I3 ~ [dem ™A e K Inty (1 —K2) jg) g (v,,) FON?), K, ~0. (3.93)

Finally, J3§ ~ O(N~?) away from the regions K,, & cosf,, K, ~ sinf,, in which it
becomes '

Ja ~JG 0t e, — 1) O e N py x (2 +2), (3.94)
where S0 ~ [Csxsal Um+ Yn) N L psm) + Lrs ()1 +ONH), (3.95)
Phil. Trans. R. Soc. Lond. A (1995)
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Vibration and radiation of fluid-loaded plates 21
—in/4 fiN(1—-K,, cosf,—K,sin0.)
with Cpaa = e : (3.96)
i cos? O, sin? 0, (cos 0, +K,,) (sin6,+ K,)
and Crre = 2874 /[ T cOs 0, 8in O, (cos 0, + K,,) (sin 0, + K,)], (3.97)
F*(zt) mieind jeriz
1 = 1 - 1 - . ‘
Fxx(?) A 92 2, (3.98)

(e) Results summary and validation
(i) Summary of asymptotic results

The analysis presented in §§3b—d yields asymptotic expressions for the impedance
integral, Z3 . in terms of the dimensionless modal wavenumbers K,, = k,,/k,
K, =k,/k,, (with K, and K, defined similarly) and the (large) dimensionless plate
length, breadth and diagonal u=k,a, 7 =kyb, N= (u®+92: In all the cases
considered, the relevant integral is expressed as a sum of six terms, cne exact (which
usually gives the leading order contribution) and five evaluated asymptotically.
Thus, for the direct case (m = p,n = q),

Z(r)rfnmn =Zex+€mzmo+enzno+zml+Zn1+st’ (399)

where ¢, is one for K,, < cosf,, and zero otherwise, and ¢, is defined similarly in
relation to sinf,. The tangent of the angle 6, is equal to the plate aspect ratio, b/a.

In (3.99), Z,, is the exact term, and is given by (3.46)—(3.48), while Z,,, and Z,,,
are oscillatory terms, whose most general forms are defined by (3.50) and (3.52)
respectively. The function F'*(z) in these expressions is a Fresnel integral, given by
(3.16). The next two terms, Z,,, and Z,,,, also form a pair, and are significant in two
cases. Z,,; becomes important when K, is around one ((3.54), (3.55)) or K, near zero
((3.57), (3.58)) and Z,,, is similarly relevant for K, close to one or K,, to zero ((3.60),
(3.61)). Finally, Z, contributes when K, is near cos 6, or K, near sin 6., and is given
by (3.62) and (3.63), with modifications described by (3.66)—(3.68) if both transitions
occur very nearly at the same time.

These expressions combine to specify Z% — to an accuracy O(N~?%), apart from
around coincidence (K2 +K2% ~ 1), where it is O(N?) and the following term, of
O(N~%), has not been found. They also contain all the formulae given by Leppington
et al. (1982) for the real part of the impedance, and the leading order below
coincidence (K% +K? > 1) imaginary term noted by Davies (1971a) and Chang &
Leehey (1979). The unified approach presented here has thus reproduced and
extended the known expressions for Re (Z% ) while simultaneously obtaining, for

mnmn

the first time, a full description of Im (Z% ) over the entire parameter range.

For the singly-cross case (m # p,n = q) the impedance is written in the form
Z(r)rgnzm = {Kpr/[(K;;_K%n)]} [J;(m_J)fnn], (3.100)

and the analysis for the partial impedance then yields six component terms
((3.69)—(3.83)) analogous to those of (3.99). These expressions, like those for the
direct case, are accurate to O(IN—2) except around coincidence, where the leading term
is O(N %) and the following, O(N~%), term has not been found. They are also entirely
new, none of them having been given by previous authors.

Symmetry arguments may be exploited to obtain the appropriate expressions for
the m = p,n # ¢ case (given by the formulae for m # p, n = ¢ with K, K,, and u, 9

Phil. Trans. R. Soc. Lond. A (1995)
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10 1 T ] 1 L 1 L 1 T T 1 T

asymptotic approximation ——
numerical evaluation —--

01 — (imaginary part)

mnmn

X

0.01

0.001 7

0.0001 1 1 1 1 I N T
0.1 0.2 0.5 1 2 5

dimensionless frequency, (K2+K2)™?

Figure 8. Numerical and asymptotic results for the direct impedance: (m,n) = (5,3), @ = 1.34 m,
b = 0.50 m. The dimensionless frequency is one when the modal and acoustic wavelengths are equal
(coincidence). Above this frequency, the mode is an efficient radiator (Re (Z%,,,,) = 1).

mnmn

interchanged), so it only remains to consider the doubly-cross case (m # p,n # q),
where the impedance takes the form

Z%npq = [KmKnKqu/(K; —K%n) (Kg_K?z)] [J;(JZ _anxq_J;);z +J§nxn]> (3101)
with partial impedance components defined by (3.84)—(3.98). These formulae specify
JXX to an accuracy O(N-%) usually, O(N-%) around coincidence, and, like the
expressions for J% ,, they are entirely new.

Most of the results presented here require validation, as only those for the direct
impedance can be checked (partially) against existing theory. Thus in the following
section we compare the asymptotic approximations with numerical evaluations of
the relevant integrals.

(ii) Comparison of numerical and asymptotic results

Numerical evaluation of the integrals Z% = J% —and J*% is performed with
standard routines from the NAG library, with asymptotic corrections to reduce the
errors associated with the truncation of the infinite integration range. For the partial
impedances, where significant cancellation occurs, the range is split at the point
where the integrand changes sign, with a corresponding improvement in speed and
robustness at a (potential) cost in accuracy.

The asymptotic results are implemented in the formulation presented in (3.99).
This presents problems in the transition regions, where pairs of terms have matching

singularities of opposite sign, and the difference between two large numbers is

Phil. Trans. R. Soc. Lond. A (1995)
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0.1 T T T T

asymptotic approximation
\ numerical evaluation - - - -

0.05F A

X
mn

-0.05
imaginary part
-0.1} .
real part
_ O ] 5 1 1 1 1
0 1 2 3 4 5

dimensionless frequency, (K2+K?2)~!/2

Figure 9. Numerical and asymptotic results for the singly-cross partial impedance: (m,n) = (5, 3),
a=1.34m, b=0.50 m. The asymptotics fare least well around coincidence, where approximate
terms are most significant. Note also the computational inaccuracies at high frequencies, where
numerical evaluation of J% , becomes difficult.

required. (In the Z%, . and J%,, transition regions, the difficulty is exacerbated, as
the asymptotic terms are not known to an accuracy sufficient to cancel the lower-
order singularities in Z., and J%,.) Linear interpolation is used to avoid the errors
associated with direct evaluation close to such points.

Numerical and asymptotic evaluations of Z% =~ J% —and JX for the case
(m,n) = (5,3), a =1.34 m, b =0.50 m, are shown in figures 8-10. The results are
plotted against a dimensionless frequency, (K2, 4 K2)"%, which is one when the mode
is at coincidence, a point that marks its transition from an inefficient (Re (Z%,,.,)
small) to an efficient (Re (Z%,,..) around one) radiator. For all three quantities the
analytical approximations are clearly successful in representing the integral. Three
other cases must be considered, to test the asymptotic formulae fully (Graham 1993);
in each, agreement better than that shown here is found and the results may thus be
accepted as valid.

Three interesting features emerge from figures 8-10. First, the agreement is good
down to very low N, about 3 when the dimensionless frequency is 0.1. This is because
the exact terms dominate here, and inaccuracies in the asymptotic terms are
relatively unimportant. The worst agreement tends to be at higher N, around
coincidence, where the asymptotic and exact terms are of equal (large) magnitude.
Secondly, the problems in numerical evaluation of the integrals at high frequencies
are illustrated by the computational errors evident in figure 9 when the result is
small. In these regions the asymptotics are not only more efficient, but also more

accurate. Finally, the plots bring out the difference in magnitude between the singly-

Phil. Trans. R. Soc. Lond. A (1995)
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0.06 T T T T
asymptotic approximation
numerical evaluation - - - -
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imaginary part
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i\s
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real part
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dimensionless frequency, (K2+K?2)/2

Figure 10. Numerical and asymptotic results for the doubly-cross partial impedance : (m,n) = (5, 3),
a =1.34m, b= 0.50 m. Note the reduced magnitude of the impedance compared with the singly-
cross case (figure 9).

cross and doubly-cross impedances (typically O(N 1) and O(N 2) respectively). Modes
sharing a common mode number are thus well coupled in comparison to the majority.

It remains to consider the regions of (K,,, K,) parameter space not covered by the
asymptotic approximations above. Analytical expressions for Z,,  and Z,, with
K, ~0,K,~1andfor Z,, and Z,, with K,, ~ 1, K, ~ 0 have not been obtained,
and there is a similar lack for the corresponding cross terms. This problem is resolved
by a hybrid approach, where the asymptotic expressions found in §3¢ for the first
integral are used to provide the integrand for a numerical evaluation of the second
integral. The results (Graham 1993) show excellent agreement with fully numerical
evaluations.

4. Plate vibration and radiation
(@) Introduction

The availability of asymptotic expressions for Zj, . makes it possible to solve
(2.4) in régimes involving many modes without neglecting coupling terms. As our aim
is to assess the accuracy of the diagonal approximation in engineering situations, we
wish to investigate a practical structure, rather than one that deliberately over-
emphasizes the fluid-loading (cf. Davies 19715). We thus consider the response of a
steel plate (specified in table 1) to boundary-layer excitation in water
(po = 1000 kg m™®, ¢, = 1500 m s7*) over the frequency range 1-5 kHz.

In boundary-layer excitation problems involving water, low Mach numbers are
very low, so that the convective peak in the wavenumber—frequency spectrum is at

Phil. Trans. R. Soc. Lond. A (1995)
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Vibration and radiation of fluid-loaded plates 25

Table 1. Fluid-loaded plate parameters

length, a 20m thickness, A 0.025 m mass/unit area, M 195 kg m™
breadth, b 1.5m  bending stiffness, B, 3.0x10°Nm™  damping factor, ¢, 0.02

wavenumbers too high for significant structural response to occur. Instead, the
structure responds at lower wavenumbers, and an approximate calculation indicates
that this response is negligibly affected (via coupling) by that at the convective
wavenumber. Additionally, Hwang & Maidanik (1990) have shown that the modal
excitation terms @, .. are dominated by the contribution from the wave-
number—frequency spectrum at the modal wavenumbers, rather than at the
convective wavenumber, so it is sufficient to consider only the low-wavenumber part
of the excitation spectrum. This region is not yet well specified, but experimental
evidence to date (Blake 1986) suggests that it is reasonably flat, and we shall take
it to be of constant level @,.. This approximation neglects differences between the
supersonic and (subsonic) low-wavenumber régimes, and also any local increase in
the spectrum around the acoustic wavenumber. However, it has the virtue of
simplicity and is a useful approach for investigating the effect of the coupling terms.

Having specified our numerical example, we now consider what to expect in the
light of previous work. The diagonal approximation has been shown to be accurate
when resonant modes are also efficient radiators (Leppington et al. 1986), a condition
found above a certain critical frequency, which here exceeds 9160 Hz (the value
calculated neglecting fluid-loading). We thus find ourselves in the potentially
interesting region below the critical frequency where, according to Leppington et al.
and Mkhitarov (1972), the effect of coupling is strongest for interactions between
resonant modes. Mkhitarov’s condition for this effect to be negligible, based on an
iterative solution with the diagonal approximation as leading term, is complex, but
an order of magnitude equivalent, Nes > €, may be found by putting d,,,,,, d,, ~ €
(resonant, inefficient modes) and Z9, . ~ O(N'), which is the largest value it can
take if the (small) coincidence regions are neglected. At 1 kHz, we have Ne, = 0.2,
€go ~ 1.2, so this condition is clearly not satisfied at the lower frequencies, and is only
weakly true even at 5 kHz. Thus, given the presence of overlapping resonances in this
example, we expect the coupling to have a significant effect. (Note that Mkhitarov’s
condition for appreciable resonance overlap, that (a/b)? be expressible as the ratio of
two small integers, is too restrictive. Here it is not satisfied, but overlap still occurs
and the results differ little from the case with @ = 2m, b = 2t m.)

When coupling is important, Leppington et al. predict that the diagonal
approximation will still give an accurate result for the frequency-band-averaged
radiation. This statement is contradicted by Davies (197156), who notes that, if only
one mode is driven, the other modes must absorb acoustic energy equal to their
structural dissipation, and thus concludes that the effect of coupling will be to
increase vibration and reduce radiation compared with the diagonal approximation.
However, this argument is based on a mischaracterization of the coupling as direct
only, and ignores its leaky aspect (see §2¢(iii)), which may result in mutual radiation
by a mode pair. Furthermore, Davies does not give a full treatment of the variation
in input power, which might cause an increase in radiation in spite of an increased
tendency towards vibration. His arguments thus remain to be confirmed, and will be
reconsidered in the light of the numerical results presented here.
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Figure 11. Dimensionless input Mw S,(w)/®,), radiated Mw Sy(w)/P,) and dissipated (Mw Sy(w)/P,)
power spectra for the water-loaded plate. The low radiation efficiency in this frequency range is
clearly evident.

(b) Comparison of full and diagonal solutions
(i) Numerical implementation

Given our flat wavenumber—frequency spectrum, the cross-modal excitation
becomes D, ., = D 0,,,0,,, and (2.14), (2.16) and (2.17) reduce to a form where the
only coupling arises from Y,,, .. A further useful simplification is then obtained by
non-dimensionalizing the spectra on @,/Mw, and all results will be presented thus.

For the evaluation of the modal acoustic impedances the asymptotic results are
entirely satisfactory unless N is small (< 17.5) at coincidence, or one of the
dimensionless modal wavenumbers is near unity there. In these cases the evaluation
is either fully numerical or hybrid, respectively, until the mode is some way above
coincidence. A single-frequency comparison of the solution using this combined
approach with that obtained completely numerically indicated error levels well
below those associated with the diagonal approximation.

Finally, the matrix inversion is performed with a standard LU decomposition
routine, with partial pivoting, adapted from an algorithm given by Press et al. (1989).
This has been found to be both accurate and computationally efficient. The number
of modes to include in the matrix is determined by using a truncation criterion based
on the dimensionless impedance d,,,, and optimized by an investigation of its effect
on the diagonal approximation solutions. All mass-limited and resonant modes are
included, and stiffness-limited modes are ignored only when their contribution to the
dissipated power (their most significant effect) is negligible.

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 12. Comparison between full and diagonal solutions for the power spectra. The results are
normalized on the diagonal approximation input power spectrum S{(w), and show that including
coupling tends to increase vibration (dissipation) at the expense of radiation.

(ii) Owerall results

The dimensionless input, radiated and dissipated power spectra for our plate are
shown in figure 11. At the lower frequencies most of the input power is dissipated in
the structure, but the proportion radiated increases with frequency, showing the
effect of approaching the critical frequency. Rather similar results are obtained when
coupling is neglected, and the two sets are best compared by normalizing all spectra
on the diagonal approximation input power spectrum, S{(w) (figure 12). We see that
the inclusion of coupling effects may result in either an increase or a decrease in input
power, with no noticeable bias, but there is a clear tendency for plate vibration to
increase at the expense of acoustic radiation. These results confirm some of the
expectations mentioned in §4a, but the errors associated with the diagonal
approximation are surprisingly small, suggesting that conditions for the neglect of
coupling less stringent than Ne, > ¢, may be found, given a better understanding of
the problem. To this end, we first consider the contributions made by different classes
of mode, and then investigate unimodal excitation.

(iii) Results by mode class

For this analysis the modes are classified into four types: efficient (class 1), mass-
limited (class 2), resonant (class 3) and stiffness-limited (class 4). Any mode with
Re(Z%,,.») > 1 is deemed efficient; in practice this entails all modes above
coincidence and a few below, but close to, coincidence. Among the remainder, a mode
is classed as resonant if the neglect of Re (d,,,) would lead to an error of greater than

5% in calculating its response amplitude (under the diagonal approximation), and
Phil. Trans. R. Soc. Lond. A (1995)
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Figure 13. Dimensionless input power spectra by mode class. The overall solution is dominated
by the input to the resonant modes.
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Figure 14. Dimensionless dissipated power spectra by mode class. Vibration levels are dominated
by contributions from the resonant modes, and this is reflected in the dissipated power.

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

/\
A

' \

e ol

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Q \
'\

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Vibration and radiation of fluid-loaded plates 29
1000 T T T

100

Ay MG

A VAR VRS

PERTAY I AR Y ’

N S YY) '

4 AN YA A Y] Yoy -
A VYRRV [

Conp e ATV

ALV AV A

Mo Sy(@) | D,

overall solution ——

class 1 modes ————
" class 2 modes ----- |
class 3 modes eeeeeerrees
- class 4 modes —-—-— ..

0.1 i i 1
1000 2000 5000

frequency/Hz

Figure 15. Dimensionless radiated power spectra by mode class. When compared with the
dissipated power spectra of figure 14, the influence of radiation efficiency is clear.

the mass-limited and stiffness-limited classes contain the remaining above and below
resonance modes respectively. The dimensionless input, dissipated and radiated
power spectra for the four mode classes are shown, along with the respective overall
spectra, in figures 13-15. Unsurprisingly, the input and dissipated powers are
dominated by the resonant modes, but this is not so for the radiated power, where
the efficient modes also make a significant contribution.

Again, comparison with the diagonal approximation is by normalized spectra. We
find that the efficient modes (figure 16) show significant percentage changes in
velocity when coupling is included, but their dissipation is so low that the effect on
the input and radiated powers is negligible, and both are little altered from the
diagonal approximation. The mass-limited modes (figure 17) show a different input
power trend, the full solution being consistently below the diagonal approximation
over most of the frequency range. This behaviour is repeated in the spectra for the
radiated power, but not in those for the dissipated power, which are substantially the
same. Moving on, the dominance of the resonant modes is confirmed by the
resemblance between figure 18 and figure 12, described earlier. Here, though, we
should additionally note that the variations in input power compared with the
diagonal approximation, although unbiased, correlate well with the peaks and
troughs of the input power spectrum. Finally, the stiffness-limited modes (figure 19)
show similar characteristics to the mass-limited modes. The most significant
difference is in the relative importance of dissipation and radiation, owing to the very
low radiation efficiency of this class.
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Figure 16. Class 1 modes: comparison between full and diagonal solutions for the power spectra.
The results are normalized on the diagonal approximation input power spectrum for this class, and
demonstrate the low vibration and dissipation levels of the efficient modes. The effect of coupling
is small in absolute terms.
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Figure 17. Class 2 modes: comparison between full and diagonal solutions for the power spectra.
The effect of coupling is generally a reduction in input and radiated power, with little change in
vibration levels.
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Figure 18. Class 3 modes: comparison between full and diagonal solutions for the power spectra.

The inclusion of coupling results in increased vibration, decreased radiation, and an unbiased

fluctuation in input power. The latter correlates with the peaks and troughs of the corresponding
spectrum (figure 13).
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Figure 19. Class 4 modes: comparison between full and diagonal solutions for the power spectra.
The coupling has an effect similar to that for class 2 modes. Note the very low radiation efficiency
of these stiffness-limited modes.
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Figure 20. Dimensionless input power spectrum for mode (9,3): unimodal (MwS,,,,(w)/P,) and
diagonal (MwSY,,(w)/D,) solutions. Here the result of including coupling is an increase around the
resonance peak, a decrease either side and oscillations at resonance frequencies of modes well
coupled to (9, 3).

(iv) Unimodal excitation

The trends observed in figures 16-19 may be understood by investigating the
response of the system to single-mode driving. This is more than a useful ad hoc
simplification: because our model forcing is uncoupled, the overall behaviour is in
fact an exact superposition of all such unimodal excitation cases. A suitable mode to
consider is (9, 3), which passes through all four classes over the 1-5 kHz frequency
range. Its input power spectrum is shown, along with the diagonal approximation,
in figure 20. At the resonance peak, the effect of including coupling is to cause a slight
increase in input power, while on either side the reverse is true. Further above
resonance, the full solution has single oscillations about the diagonal approximation
at distinet points, which correspond to the resonance frequencies of modes well
coupled to (9, 3): for example, the first such oscillation is at the resonance frequency
of (11, 3). Finally, once (9, 3) becomes efficient, the unimodal and diagonal solutions
coincide almost exactly. The solutions for radiated power are shown in figure 21, with
the unimodal solution lower than the diagonal approximation in the region of
resonance, then mirroring the input power behaviour above resonance and in the
efficient region. Lastly, the solutions for dissipated power (figure 22) are remarkably
similar everywhere, except at resonance, where the diagonal approximation is lower.
Some variations on this behaviour occur among other modes. First, the oscillations
seen in the input and radiated powers above resonance may sometimes also appear
below resonance, and are occasionally biased to the positive or negative side of the
diagonal solution. Secondly, not all modes show any noticeable difference in input
power at resonance. Nonetheless, (9, 3) is representative of the general tendencies
observed when unimodal excitation is considered.
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Figure 21. Dimensionless radiated power spectrum for mode (9, 3): unimodal (Mw S,

Omn(w)/(pc) and
diagonal (MwS3,,(w)/®,) solutions. Around resonance, coupling lowers the unimodal solution,

whereas elsewhere the behaviour is similar to that of the input power.

Thus far we have concentrated our attention solely on the driven mode. Figure 23
shows the spectra for dissipated power (those for radiated power are of the same
magnitude and opposite sign) in two of the non-driven modes: (3, 7), whose resonance
coincides with that of (9, 3), and (11, 3), a mode well coupled to (9, 3). The significant
interactions occur at the resonances of (9,3) and the non-driven mode under
consideration, and the effect is clearly more powerful in the resonant/resonant case
than in either of the resonant/non-resonant cases, substantiating the assertions of
Leppington et al. and Mkhitarov. However, the resonant/non-resonant interactions
do still affect the overall radiated and dissipated power, biasing the oscillations in
figure 21 towards the negative side of the diagonal approximation and appearing as
corresponding small peaks in the dissipated power.

We seek explanations for the behaviour seen in figures 20-23 by considering a
simplified model, where only two modes interact. This neglects the effect of
‘flanking”’ paths through other modes, but will give a good indication of the
behaviour in situations where the interaction between a single mode pair dominates,
as appears usually to be the case here. When (2.4) consists simply of two modal
equations, for (m,n) and (p,q), the solution is trivial, and

Ymnmn = [dmn - (efo Z%npq)z/dpq]_l> (4'10/)
Ymnpq = qumn = _(efo Z%npq/dpq) Ymnmn (4'1b)

The results for the input power spectrum (figure 20) may now be examined in the
light of equation (4.1a), taking (m,n) as the driven mode. When (m,n) is at
resonance, d,,, ~ €, and we must consider potential modes (p,q). If (p,q) is also at
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Figure 22. Dimensionless dissipated power spectrum for mode (9, 3) : unimodal (Mw S3,,,,(w)/P,) and
diagonal (MwSS,,,(w)/D,) solutions. The curves coincide almost exactly away from resonance,
explaining the matching input and radiated power behaviour in figures 20 and 21. At resonance,
coupling increases the dissipation.
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Figure 23. Dimensionless dissipated power spectra for modes (3,7) and (11, 3): unimodal solution.
The dissipation peaks in these non-driven modes arise from two different types of interaction with
(9, 3): resonant/resonant for (3,7) and well coupled, resonant/non-resonant for (11, 3).
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resonance, it will not be well coupled to (m,n) (i.e. m # p and n # q), so that
Z o pg ~ ON72). Thus,

(€10 Zmnpg)” _ €s (€0 ) 19
d,, N*\Ne,) (4.2)

Alternatively, if (p, ¢) is not at resonance, then it may be well coupled to (m,n), and
Z%npq ~ O(N71), giving

(Gm Z%npq)z/dpq ~ eg(efo/Nes)za (43)
assuming d,,, ~ O(1). The parameter N, varies from 2 to 50 over our frequency
range, so that (4.3) represents the more important term, and we must consider the
resonant/non-resonant interaction. Since €2 < ¢,, and ¢;,/Ne, ~ O(1),

1 1 (e, 2%, .\
Re[Y* ~ = [bt0%mnpe ]

where the difference compared with the diagonal approximation is represented
by the second term. In general, Z3, cannot be simply characterized, but for
two well coupled, below coincidence modes the singly-cross case results give
—in < arg (Z%,,,) < 0 almost always. Thus, if (m,n) is at resonance (d,,, real) and
(p,q) is above resonance (d,, ~ —1i), (4.4) implies that the input power will be greater
than the diagonal approximation. For (p, ¢) below resonance, the opposite is true, but
most below resonance modes have |d,, | > 1, so this effect is less significant. We thus
expect a net positive bias in the input power when (m, n) is at resonance, as seen in
figure 20. On either side of the resonance peak, d2,,, changes rapidly from positive real
to negative real, so the sign of the bias reverses, as observed.
Away from resonance, we write
R’e [Y:’anﬂ] = R’e [dmn - (efo ZOf )z/dpq]ldmn - (efo Z%npq)z/dpql_z' (45)

mnpq

The modulus is dominated by the reactive part of d,,,, and is thus essentially the
same as |d,,,|"%. However, since Re(d,,,) ~ ¢, the inclusion of coupling may
significantly affect the first term, and will do so most effectively if (p, ¢) is resonant
and well coupled to (m,n). Here the condition on arg(ZYy,,,) implies that the
difference from the diagonal approximation will be positive below the (p, ¢) resonance
(d,, ~ 1) and negative above (d,, ~ —i), explaining the solitary oscillations seen in
figure 20. The sign of the difference at the (p, ¢) resonance cannot be determined from
these arguments; hence the oscillations do not always have zero bias about the
diagonal solution. Finally, once (m, n) is efficient, Re (d,,,) ~ €, so that the effect of
interaction with a resonant mode is much smaller. This explains the convergence of
the full and diagonal solutions seen in figure 20.

Having considered the input power, it is now necessary to investigate how it is split
between radiation and dissipation. The notable feature of the dissipated power in the
driven mode is the accuracy of the diagonal solution away from resonance. For
unimodal excitation, the dissipation is proportional to

|Ymnmn|2 = |dmn - (efo Z%npq)z/dpql—z’ (4‘6)

and the arguments presented above again hold for the modulus. The modal velocity
is thus essentially unchanged from the diagonal approximation except at resonance,
where the tendency for input power to increase corresponds to a bias in favour of
higher velocity. '
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The radiated power, equal to the difference between the input and dissipated
powers, will therefore reflect the input power characteristics away from resonance, as
seen in figure 21. However, the drop at resonance is not so easily explained, because
the increase in velocity there must correspond to an increase in acoustic radiation
due to the real part of the direct impedance, and the driven mode must therefore be
absorbing acoustic energy by virtue of the coupling effect. This implies a negative
leaky coupling component (which is of the same sign for two interacting modes), in
order that the non-driven mode also be absorbing acoustic energy. We therefore
conclude that two interacting modes are capable of extracting energy from the
ambient acoustic field via the leaky coupling — a highly counter-intuitive concept,
because the leaky coupling arises from an integral over radiating wavenumbers.
The two-mode model is again useful here, as the interaction terms given
in (2.23) may be evaluated exactly in this case. For unimodal excitation,

Vpgmn = Yogmn Yinmn Ponnmn» 80 that, writing Z% = = o +iy, d,, = d,+id; and using
(4.1) for Y, .uns Ypgmn, the direct coupling term becomes
- 261’0 Im (Z%npq) Im (qumn) = 26f20[X2dr_ O-Xdi] ¢mnmn|Ymnmn|2/|dpq|2’ (4.7(1)

while the leaky component is given by

26f0 R’e (ZOf ) R’e (qumn) = 26f20[gzdr + UXdi] anmniymnmnlz/ldpqlz (47b)

mnpq

These equations demonstrate the validity of the arguments presented above. The
leaky component is clearly capable of becoming negative, and is certainly so both for
(p,q) resonant (d; ~0), and for (p,q) mass-limited and well coupled to (m,n)
(oxd; > 0). Far from counteracting the tendency of the direct coupling terms to
increase vibration at the expense of acoustic radiation, the leaky coupling
components enhance the effect. Note also that the order of magnitude arguments
applied previously show that, although the resonant/non-resonant mode interaction
dominates the input power behaviour at the (m, n) resonance, the net energy transfer
to mode (p, q) is greatest if it is also resonant, as borne out by figure 23.

Our investigation of the unimodal excitation case is now complete. We have found
that, in comparison with the diagonal approximation, the input power tends to rise
at the resonance frequency of the driven mode, drop either side of it and then
undergo single oscillations at the resonance frequencies of modes well coupled to the
driven mode. The dissipated power in the driven mode differs significantly only at
resonance, where it has a tendency to increase, whereas the radiated power mirrors
the input power behaviour except at resonance, where it is reduced by the negative
leaky coupling effect. When the non-driven mode powers are included, the balance
is tilted still farther away from radiation, although the additional effect is relatively
small. The success of the two-mode model in explaining these phenomena confirms
the validity of the assumptions underlying its use.

We may now integrate these observations into an explanation of the behaviour of
the mode classes, described in (iii). For any given mode, the input power will simply
be the unimodal input power (e.g. figure 20), whereas the radiated and dissipated
powers will consist of the unimodal, driven values (e.g. figures 21 and 22) plus a
respective decrease and increase due to energy transfer from other modes, now also
driven. Thus, for the efficient modes (figure 16), the input power will be close to the
diagonal solution, as will the sums of the driven radiation and dissipation. The
contribution from other modes will then decrease the radiation and increase the
dissipation. However, the efficient modes are extremely difficult to move, being away
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Vibration and radiation of fluid-loaded plates 37

from resonance and very highly damped (high radiation efficiency), and their
structural dissipation is tiny. Thus, although the percentage increase in structural
dissipation (and therefore modal velocity) due to this effect is large, the decrease in
radiated power is negligible, and it remains close to the diagonal solution.

The mass-limited modes (figure 17) have two potential sources of difference
between the full and diagonal solutions for input power. The interactions with
resonant modes, however, are small in absolute value and will also tend to cancel in
the modal summation (which may crudely be likened to a narrow band frequency
average), so that the remaining effect, the negative bias just beyond the resonance
peak, will dominate, and the input power will tend to be below the diagonal solution.
The radiated and dissipated powers will be similarly determined by values just
beyond the resonance peak, where no significant contributions from other driven
modes occur, so their behaviour will simply reflect that of the unimodal, driven
powers, showing virtually unchanged dissipation and reduced radiation. The
characteristics of the resonant modes (figure 18) are also essentially established by
the unimodal, driven powers, with input power rising over the diagonal solutions at
resonance then dropping either side, radiated power biased lower and dissipated
power higher. However, there will also be contributions from other driven modes
(when resonances coincide), which will further accentuate the imbalance between
radiation and dissipation. Finally, the arguments presented for the mass-limited
modes apply equally to the stiffness-limited modes, and they show very similar
features (figure 19).

(v) Requirements for the neglect of coupling

Having explained the detailed effects of the modal coupling, we may now extract
its important aspects and determine when they may be neglected. The characteristics
of the overall problem are dominated by the resonant modes, except for the radiated
power, where the contribution from efficient modes is also significant. However, this
latter feature is essentially unaffected by the coupling, and it is thus the resonant
mode behaviour that is relevant. Here, two effects have been found: the
resonant/non-resonant interaction with well coupled, mass-limited modes, and the
expected interaction with other resonant modes. Coupling may only be neglected if
both these effects are small, and appropriate conditions are readily obtained from the
two-mode model. If the input power is to follow the diagonal approximation, the
correction term in (4.4) must be small, giving

N /efy > 1 (4.8)
for the resonant/non-resonant mode interaction, and
(V%65 €10)* > 1 (4.9)

for the resonant/resonant effect. The situation is less clear for the radiated and
dissipated power, but detailed consideration shows that (4.8) and (4.9) apply here
t0o. In our case they are weakly true at 1 kHz, and become increasingly valid at
higher frequencies, as borne out by the numerical results.

We may also now consider the situation where there is not significant overlapping
of resonant modes. In this case, the only relevant interaction is that between
resonant and non-resonant, well coupled modes, so (4.8) is the sole requirement. This
condition, though, was derived assuming Re (d,,,) ~ ¢, which is true for most below
coincidence modes if (4.9) is satisfied. If not, we shall typically have
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Re(d,,,) ~ €,/N? and (4.8) then becomes ¢, < 1. When resonances are distinct,
coupling may be neglected kowever small the structural damping if the fluid-loading is
light, and otherwise condition (4.8) only is required.

These conditions for the neglect of coupling below the critical frequency are still
more restrictive than the simple N > 1 requirement above it (Leppington et al. 1986).
However, they are not stringent, and this raises the possibility of applying the sEa
approach to situations with signiicant fluid-loading. To assess this idea, we now
present a modified sEa analysis and its results for the flat-plate problem considered
here.

(c) Application of sEA to the fluid-loaded plate
(i) Analysis

The problem of applying sEA to a fluid-loaded plate radiating to infinity has been
considered by a number of authors, including Heron (1977), Davies (1971a) and
Leppington et al. (1986). However, all these analyses have applied to light fluid-
loading situations, and require modification in this case. We shall demonstrate how
this may be achieved, using the approach of Leppington et al. as a basis for
investigation.

The sEa analysis starts with the diagonal approximation for the radiated power
spectrum, and considers frequency-averaged values. From (2.13) and (2.19), the
dimensionless frequency-averaged spectrum may be written as

Mo,
1

204 Co @ w0t g ()
a — 2P0 %Wy mn
Solwe)) = A~ X J o dmnlzdw’ (4.10)

c m,n J w,—3Ao

where o,,,(w) = Re (Z%,,.,), and it is assumed that Aw/w, < 1, but also that the
frequency band is sufficiently wide to include several resonant modes. The significant
contributions to {S%(w,)) come from the resonant (class 3) and efficient (class 1)
modes, so we write {S3(w,)> = {S3(@4)Dres + {SLwy) ey and treat each component
separately.

The first, (85(w,))res, 18 found by noting that, for a resonant mode (m,n), the
behaviour of the integrand is dominated by the rapidly varying term |d,,,| 2. When
fluid-loading is light, Im (Z%,,,) may be neglected in d,,, (equation (2.10)) and
Leppington et al. obtain, in our notation,

(Mwy/ D) {SH(wo) Dres X Ty g €T (Ny) ) /<> (4.11)
where ng is the plate modal density,
ng = (ab/4m) (M/B,)}, (4.12)

(o(K,,,)> the mean radiation efficiency for a dimensionless modal wavenumber
Kn (= kpn/k,), <€) the mean modal damping, €,+€,{c), and N, the dimension-
less plate wavenumber. Implicit in this solution is the assumption that
O mn/ €5+ €rg O py)) = (o) /<€), which is only certainly true when ¢, 0,,, < €, or
> ¢;. With this caveat, the solution is completed by the expression of Leppington
et al. for (o), found by approximating the summation with an integral:

wtn Kmn+1) 2Kmn]
(K ) = |1 + : 4.13
(o)) nKm,,MKsm—l)f[“(Km—l oy (4.13)
Phil. Trans. R. Soc. Lond. A (1995)
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Figure 24. Class 3 modes: comparison of full (MwS,(w)/®P,), diagonal (MwSi(w)/P,) and SEa
(Mw{Sy(wy)>/P,) solutions for the radiated power. The light fluid-loading SEA result takes no
account of added mass due to the fluid and overestimates significantly compared with the modified
formula.

For heavier fluid-loading, the effect of the added mass due to the imaginary part of

ZY . mn 18 significant, and d,,,, is now given by
& ks

Qun X 1[]’%1—m]+[—n’%ﬁes+emamn], (4.14)
p p

with o= 14,/ (K2, + K2 —1)E (4.15)

For the resonant modes, where K% + K2 is specified by the condition K, = WL%ND,
1% is a slowly varying function of w,, and using this fact a similar analysis to that of
Leppington et al. may be followed, with result

- T,y g 6f0<0-(m%Np)>

(Mw0/¢c) <Sg(w0)>res ~ ’I’?L2<€/> ’ (416)

where n} = min, and {¢’) = e,+€,{a) /1. The resonance condition only specifies
K,,, implicitly, but a satisfactory approximation is obtained after the first step of an
iterative solution starting with K, = N,.

The non-resonant term, {S3(w,)Yey, arising as it does from the slowly-varying,
efficient modes, is evaluated by neglecting the frequency average (corresponding to
an assumption of constant integrand over the frequency range considered) and
approximating the sum by an integral in wavenumber space. Again following
Leppington et al., we obtain

1 _ K2\
]Z;UO <Sg(wo)>eff ~ efon/l’”J Kmn(l Kmn) dK
c

mn*
0 |dnl®
Phil. Trans. R. Soc. Lond. A (1995)
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Figure 25. Class 1 modes: comparison of full (MwSy(w)/®,), diagonal (MwSi(w)/P,) and sEA
Mw,(S5(w,)>/P,) solutions for the radiated power. Here, inclusion of the effect of radiation
damping on the response, neglected in the light fluid-loading sEa formula, significantly improves
the prediction.

For light fluid-loading, d,,,, is dominated by the reactive term i(K3,,/N;—1) and the
result is the approximation of Leppington et al.:

2
My CHEO { 3N, + . artanh [(N2+1)" 1]

| NG
>eff ~ fO [N4 ZNp 1)

3N2—2 o
+ﬁaretan[( —1) ]H (4.18)

For heavier fluid-loading, however, the radiation damping in d,,, is significant and
a more appropriate form is therefore
Ay X —ite[1—K2, 7, (4.19)

in which case (4.17) becomes
(Mawy/ D) {S5(o) Detr & (€10 /) [1—€rg aretan (exg')]. (4.20)

Equations (4.20) and (4.18) match for cases with light fluid-loading and purely mass-
limited efficient modes (e, < 1,N, > 1), as would be expected.

(ii) Comparison with modal results

Figures 24-26 show the comparisons between modal evaluations of S;(w) and the
SEA approximations. In each case, both full and diagonal solutions are plotted, along
with the light fluid-loading and modified SEA expressions. For the resonant modes
(figure 24), the neglect of added mass in the formulae of Leppington et al. leads to a
result that is significantly too high, whereas the heavy fluid-loading expression is
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Figure 26. Comparison of full (Mw Sy(w)/®P,), diagonal (MwSi(w)/P,) and sEa (Mwl{Si(w,)>/D,)

solutions for the overall radiated power. The pattern of figures 24 and 25 is repeated, except that

the agreement between the modal solutions and modified sEa is better, owing to the contributions

of class 2 and 4 modes to the overall radiation.

only slightly above the average value of the diagonal solution. A similar trend is seen
for the efficient modes (figure 25), the high radiation damping being crucial in this
problem. As a result, the overall solutions (figure 26) show the same behaviour as the
two components, with the exception that the modified sEa approximation is now
more accurate. This is due to the relatively small, but not insignificant, contributions
from class 2 and class 4 modes, which raise the modal solutions.

So, as expected, the light fluid-loading expressions are not successful in predicting
the power radiated by a significantly fluid-loaded plate. However, the approach used
to derive them is easily modified to suit the different parameter régime, and the new
expressions provide reasonably accurate predictions, given the approximations
inherent in the SEA approach.

5. Conclusions

The work presented in this paper has investigated the validity of two common
approximations in the analysis of the vibration and radiation of fluid-loaded plates,
namely the neglect of modal coupling (the diagonal approximation) and the sEa
approach. The asymptotic evaluation of the modal coupling terms, presented in §3,
makes numerical solution of the fully coupled modal equations feasible, and it has
thus been possible to compare the results of the two approximate approaches with
the full solution for a practical problem, and thereby to gain an appreciation of their
applicability.

The comparison between the coupled and diagonal solutions demonstrates the
complicated nature of modal coupling due to an acoustic field. Contrary to previous
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assumptions, the coupling does not act solely to transfer energy from one mode to
another (direct coupling), but also results in an interaction between the two modes
and the ambient acoustic field that is of the same sign for each mode (leaky coupling).
It is therefore hard to find simple arguments that explain its effect, but a model
assuming interaction between two modes only has been successful in providing a
qualitative interpretation of the phenomena observed in the full solution. In
comparison with the diagonal approximation, these are essentially an unbiased
fluctuation in input power from the driving forces, and a bias in favour of increased
vibration (structural dissipation) at the expense of acoustic radiation. Again
contradicting previous assumptions, these effects have been found to arise not only
from the interaction of resonant modes, but also from resonant/non-resonant
interactions. As a result of this improved understanding, new conditions for the
neglect of modal coupling have been obtained ((4.8) and (4.9)).

The comparison with sega results shows that existing expressions, valid for light
fluid-loading, are inaccurate in the significantly fluid-loaded problem considered
here. However, the sea approach may still be applied, with appropriate modi-
fications, and has been found to yield formulae that are useful and accurate,
particularly at high frequencies.

When considering the applicability of the approximate methods to engineering
problems, it is necessary to discuss the generality of the conditions derived here.
These are valid for a simply supported plate, undergoing forcing that does not couple
the modes. However, Lomas & Hayek (1977) have shown how the vibration of a plate
with arbitrary edge conditions may be expressed in terms of the simply supported
formulation, by writing the true modes as weighted sums of the simply supported
mode functions. This may affect the condition for negligible resonant/resonant mode
interaction (equation (4.9), where it is assumed the modes are poorly coupled), but,
as the sum for a given mode will usually be dominated by the nearest corresponding
simply supported mode, the difference should not be great. The effect of coupled
forcing is small either if the cross-modal excitation term @, ,; is small, or if the cross-
modal impedance is small, and for high frequencies they are both typically O(N2).
This complication should therefore also not alter the conditions presented here
greatly, and they may thus be assumed to have a generality beyond the simple case
investigated.

We conclude, then, that for most load-bearing engineering structures surrounded
by unbounded fluid, the diagonal approximation will be sufficiently accurate, except
possibly at low frequencies. SEA approximations may also be useful, but the
assumptions involved in their derivation may require tailoring to suit individual
situations.

The work presented in this paper was undertaken with financial support from British Aerospace
(Regional Aircraft) Limited. The author is also indebted to his supervisor, Dr Ann Dowling, whose
advice and encouragement have been invaluable.
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